

#### Brought to you by outPHit

For deep retrofits made faster, cheaper and more reliable



Oct 2020 - Sep 2023 | EU funded via H2020 with 10 partners from 7 countries

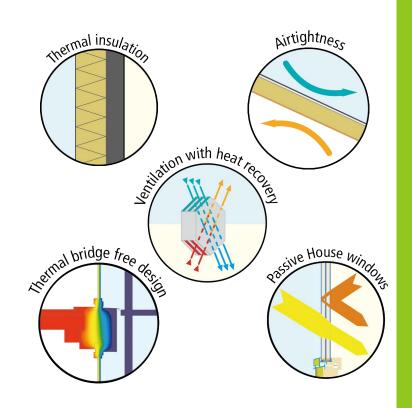
#### Find out more at outphit.eu



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 957175. The presented contents are the author's sole responsibility and do not necessarily reflect the views of the European Union. Neither the EASME nor the European Commission are responsible for any use that may be made of the information contained therein.



# The outPHit approach


#### The EnerPHit Standard

- A sound basis in Passive House principles
- A focus on quality, comfort and outstanding performance



#### **EnerPHit requirements**

Passive House components and very low annual space heating demands\*



Passive House principles | © Passive House Institute

<sup>\*</sup>climate dependent; in Europe from 15 to 30 kWh/m<sup>2</sup>a

# **Energy Standards**

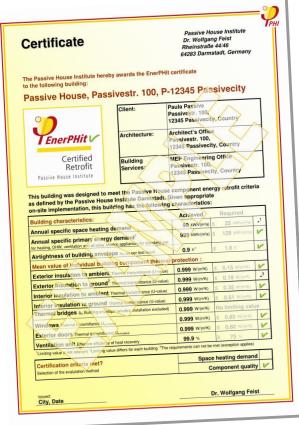
#### **Energy standards in PHI's certification scheme:**



Passive House buildings are characterised by especially high levels of indoor comfort with minimum energy consumption. The Passive House Standard offers excellent economic efficiency especially for new builds.

The Passive House Classes Classic, Plus or Premium can be achieved depending on the use of renewable energy sources




EnerPHit is the established Standard for refurbishment of existing buildings using Passive House components. Despite the slightly higher energy demand, it offers most of the advantages of the Passive House Standard.

The EnerPHit Classes Classic, Plus or Premium can be achieved depending on the use of renewable energy sources



The PHI Low Energy Building Standard is suitable for buildings that, for various reasons, do not fully comply with the more ambitious Passive House criteria.

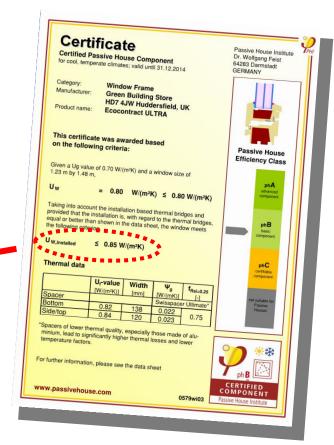
#### **Introduction: EnerPHit**



#### **EnerPHit Standard:**

Quality assurance for retrofit of existing buildings

- Guideline and incentive for an optimal efficiency standard
- Quality assurance for building owners
- Market transparency


"Energy Retrofit with Passive House Components"

## **EnerPHit certification criteria: 2 ways**

# 1) Based on component criteria for Certified Passive House Components

| Component                                                  | Limit value                                                                                                                              |  |  |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Opaque exterior components                                 | Exterior insulation:<br>$f_T^* U \le 0.15 \text{ W/(m}^2\text{K)}$<br>Interior insulation:<br>$f_t^* U \le 0.35 \text{ W/(m}^2\text{K)}$ |  |  |
| Opaque exterior components to ground and unheated basement | f * U ≤ 0.15 W/(m <sup>2</sup> K)<br>where f: "ground reduction<br>factor" from PHPP "Ground"<br>worksheet                               |  |  |
| Windows                                                    | $U_{w,installed} \le 0.85 \text{ W/(m}^2\text{K)}$<br>g • 1.6 W/(m <sup>2</sup> K) $\ge U_g$                                             |  |  |
| Ventilation system                                         | h <sub>heat recovery,eff</sub> ≥ 75 % (incl. duct losses)                                                                                |  |  |
| Airtightness                                               | limit value: $n_{50} \le 1.0 \text{ h}^{-1}$<br>target value: $n_{50} \le 0.6 \text{ h}^{-1}$                                            |  |  |

2) Heating demand below 25 kWh/(m<sup>2</sup>a)



## **Global EnerPHit Criteria**



#### building component method:

|                              | Opaque envelope <sup>1</sup> against        |                     |                                   |                                | ٧                                                        | Windows (including exterior doors) |      |                             |                                           | Ventilation                        |                                    |
|------------------------------|---------------------------------------------|---------------------|-----------------------------------|--------------------------------|----------------------------------------------------------|------------------------------------|------|-----------------------------|-------------------------------------------|------------------------------------|------------------------------------|
|                              | ground                                      |                     |                                   |                                |                                                          | Overall <sup>4</sup>               |      | Glazing <sup>5</sup>        | Solar load <sup>6</sup>                   |                                    |                                    |
| Climate                      | Insu-<br>lation                             | Exterior insulation | Interior in sulation <sup>2</sup> | Exterior<br>paint <sup>3</sup> | Max. heat                                                |                                    |      | Solar heat gain             | Max.<br>specific                          | Min.<br>heat                       | Min. hu-<br>midity                 |
| zone<br>according<br>to PHPP | Max. heat transfer coefficient<br>(U-value) |                     |                                   | Cool<br>colours                | transfer<br>coefficient<br>(U <sub>D/W,installed</sub> ) |                                    | ent  | coefficient<br>(g-value)    | solar load<br>during<br>cooling<br>period | reco-<br>very<br>rate <sup>7</sup> | re-<br>covery<br>rate <sup>8</sup> |
|                              |                                             | $[W/(m^2K)]$        |                                   | -                              | [٧                                                       | [W/(m²K)]                          |      | -                           | [kWh/m²a]                                 | %                                  |                                    |
|                              |                                             |                     |                                   |                                | 1                                                        | 1                                  | 4    |                             |                                           |                                    |                                    |
| Arctic                       |                                             | 0.09                | 0.25                              | -                              | 0.45                                                     | 0.50                               | 0.60 | U <sub>g</sub> - g*0.7 ≤ 0  |                                           | 80%                                | -                                  |
| Cold                         | Deter-                                      | 0.12                | 0.30                              | -                              | 0.65                                                     | 0.70                               | 0.80 | U <sub>g</sub> - g*1.0 ≤ 0  |                                           | 80%                                | -                                  |
| Cool-<br>temperate           | mined in                                    | 0.15                | 0.35                              | -                              | 0.85                                                     | 1.00                               | 1.10 | U <sub>g</sub> - g*1.6 ≤ 0  |                                           | 75%                                | -                                  |
| Warm-<br>temperate           | from project specific                       | 0.30                | 0.50                              | -                              | 1.05                                                     | 1.10                               | 1.20 | U <sub>g</sub> - g*2.8 ≤ -1 |                                           | 75%                                | -                                  |
| Warm                         | heating                                     | 0.50                | 0.75                              | -                              | 1.25                                                     | 1.30                               | 1.40 | -                           | 100                                       | -                                  | -                                  |
| Hot                          | and<br>cooling<br>degree<br>days            | 0.50                | 0.75                              | Yes                            | 1.25                                                     | 1.30                               | 1.40 | -                           |                                           | 1                                  | 60 %<br>(humid<br>climate)         |
| Very hot                     | against ground.                             | 0.25                | 0.45                              | Yes                            | 1.05                                                     | 1.10                               | 1.20 | -                           |                                           |                                    | 60 %<br>(humid<br>climate)         |

# or alternatively, energy demand method:

|                                         | Heating             | Cooling                                      |  |  |
|-----------------------------------------|---------------------|----------------------------------------------|--|--|
| Climate<br>zone<br>according<br>to PHPP | Max. heating demand | Max. cooling +<br>dehumidification<br>demand |  |  |
|                                         | [kWh/(m²a)]         | [kWh/(m²a)]                                  |  |  |
| Arctic                                  | 35                  |                                              |  |  |
| Cold                                    | 30                  |                                              |  |  |
| Cool-<br>temperate                      | 25                  | equal to Passive                             |  |  |
| Warm-<br>temperate                      | 20                  | House<br>requirement                         |  |  |
| Warm                                    | 15                  |                                              |  |  |
| Hot                                     | -                   |                                              |  |  |
| Very hot                                |                     |                                              |  |  |

© PHI

© PHI

## **EnerPHit Standard: Efficiency first!**

**Basic requirement: Low heating / cooling demand** 

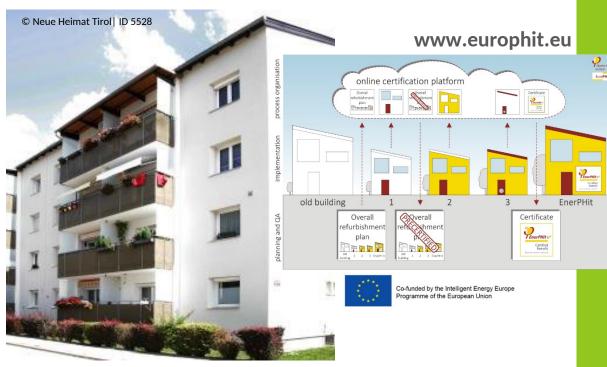






PH components and high energy efficiency (PER) + RES

#### The EnerPHit Classes **Premium** 120 Renewable energy Certified generation Retrofit 30+x [kWh/(m<sup>2</sup>grounda)] Plus 60 T EnerPHit V Certified Passive House Institute Classic 45+x classic | plus | premium | total PER-demand $[kWh/(m^2_{TFA}a)]$ T EnerPHit V Certified Passive House Institute 60+x classic | plus | premium


© Passive House Institute

#### Step-by-step retrofits with EnerPHit Retrofit Plan







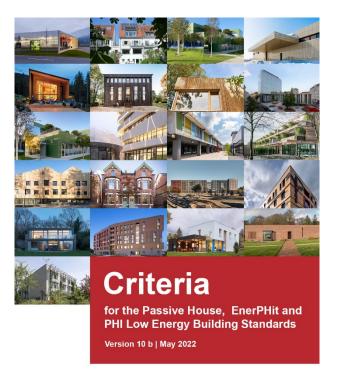


2017 MFH IN28 step-by-step EnerPHit Innsbruck, Austria | TFA: 4 206 m<sup>2</sup> Passive House Database: ID 5528

## First EnerPHit plus building



Residential and Business building in 2016


Papagou (Griechenland)

Architekt: Athanasia Roditi

Consultancy: Stefanos Pallantzas



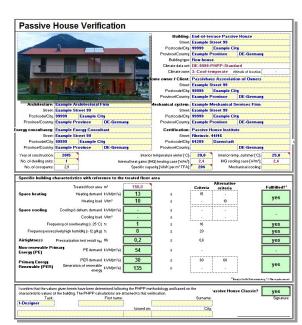
#### The Criteria Document



#### Validity of the criteria

- Applicable worldwide in any climate
- Applicable for all common usage types like residential buildings, offices, schools, university buildings...
- Applicable for all construction types like masonry, timber, concrete, steel, ...
- Criteria are coupled to PHPP version
- English, German and Spanish versions are published by PHI. Translations into other languages are not verified by PHI and are for information only.

## **Certification Brochure**



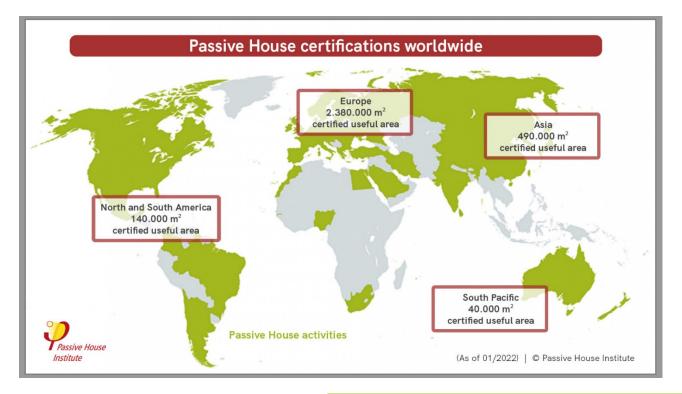

www.passivehouse.com > Certification > Buildings > Building Certification Guide

#### What does the client receive?





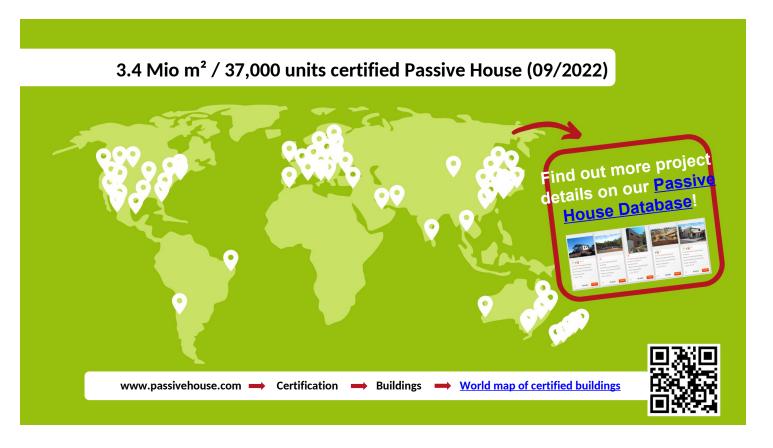



**Booklet (PHPP print-out)** 



Wall plaque

Seal as JPG file for use in context with the building


## Passive House all around the world!



## Passive House all around the world!



## Passive House all around the world!



## Why should I certify my Passive House?

Passive House Certification provides quality assurance.

Independent review by third



Especially for new builds

For retrofit projects

... and even for difficult cases

**Video** 

## My benefits as owner?



Top quality living standard for the occupants:Comfortable and healthy



Reliable energy performance



 Better solutions and lower risks due to thorough review by accredited expert ( lower construction costs



Increase in property value



 Standard recognition and eligibility for subsidies passivehouse-international.org < Passive House </li>
 Legislation & Funding

#### Benefits for me as the Designer?



 Better solutions and lower risks due to thorough review by accredited expert ( lower construction costs



 Recognition as a certified Passive House Designer passivehouse.com/training



Showcase the building via international Passive House database <a href="mailto:passivehouse-database.org">passivehouse-database.org</a>

# **BUT HOW? - Quality is Key to Success**

#### Quality assurance of design and construction













#### **Quality assurance of materials and components**

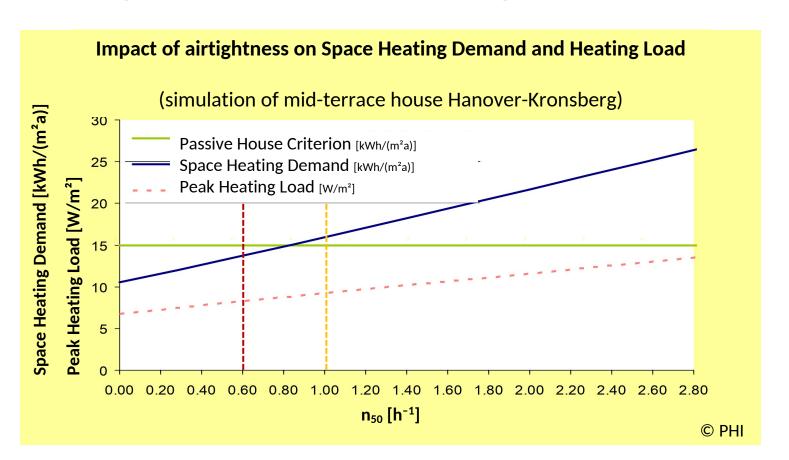
Identification of relevant parameters
Measurement and calculation procedures
Documentation and integration in whole
building performance calculation

Prediction cannot be better than the actual building realisation and the quality of the components

Capacity building: Iraining and certification of

Designers / Consultants (ca. 10.000) Craftsmen (ca. 4.000)




Components and systems: reliable performance data

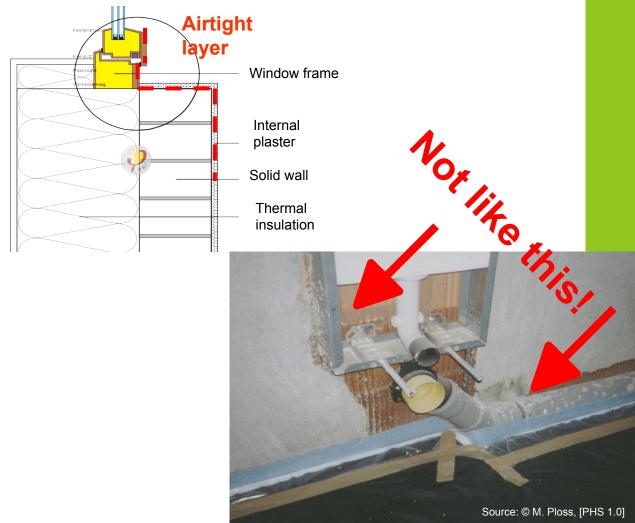






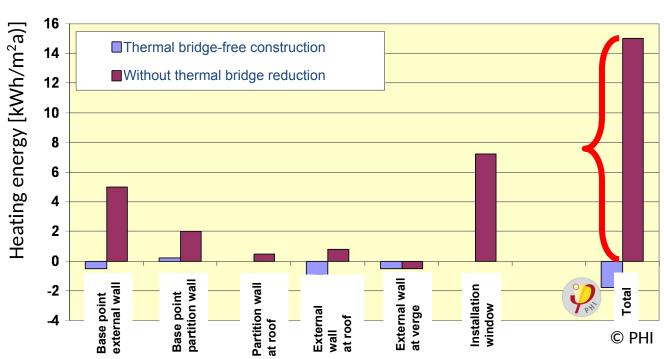
# **Airtightness and Energy Balance**



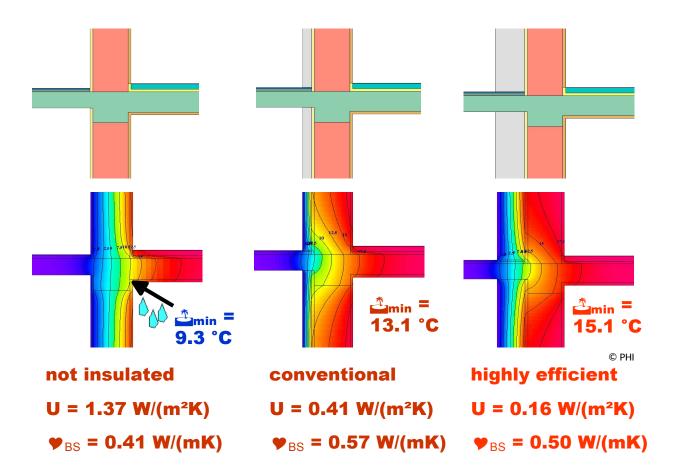

# **Airtightness**

Prepare the connection on site. Ideally, the surface should be

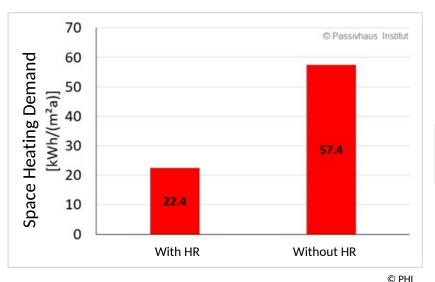
- dry
- grease-free
- dust-free.

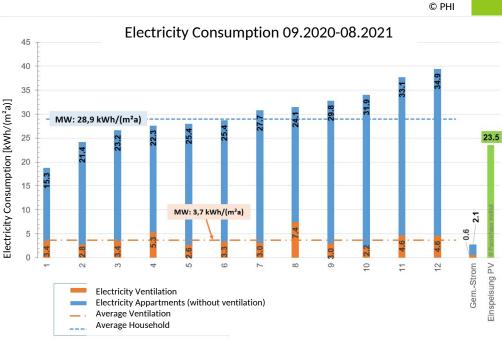

Otherwise, adhesion will not last for long.





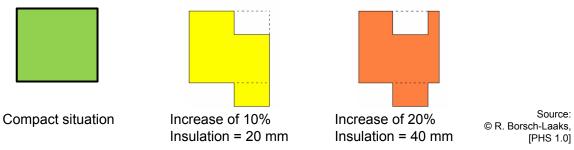

## **Thermal Bridge-free Constructions**


The total sum of heat losses caused by thermal bridge effects corresponds to  $U_{TB} = 0.1 \text{ W/(m}^2\text{K)}$ 

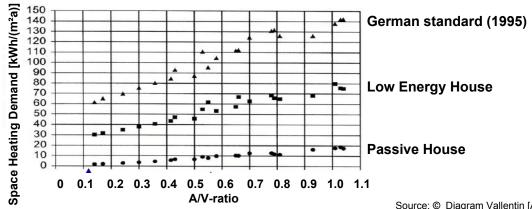



## **Improvement of Projecting Elements**




## **Ventilation with heat recovery**



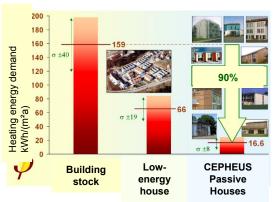


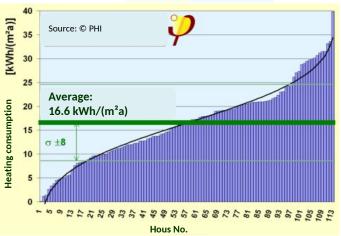

#### Compactness

Influence of an increased building perimeter at the same area

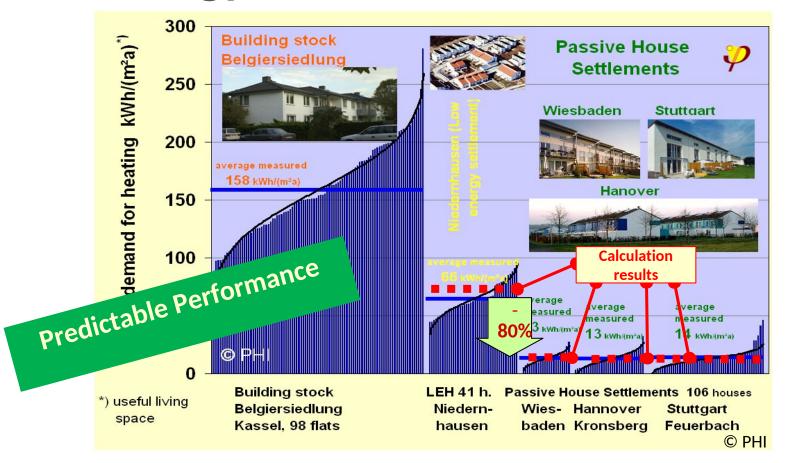


Space heating demand (SHD) varies with area/volume (A/V) ratio

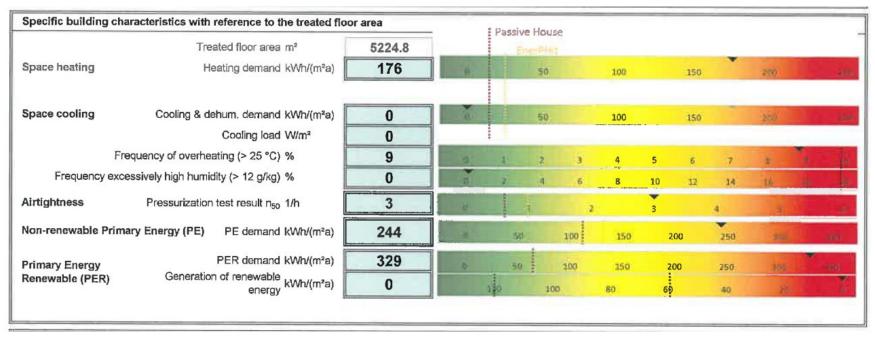




Source: © Diagram Vallentin [AkkP 19]

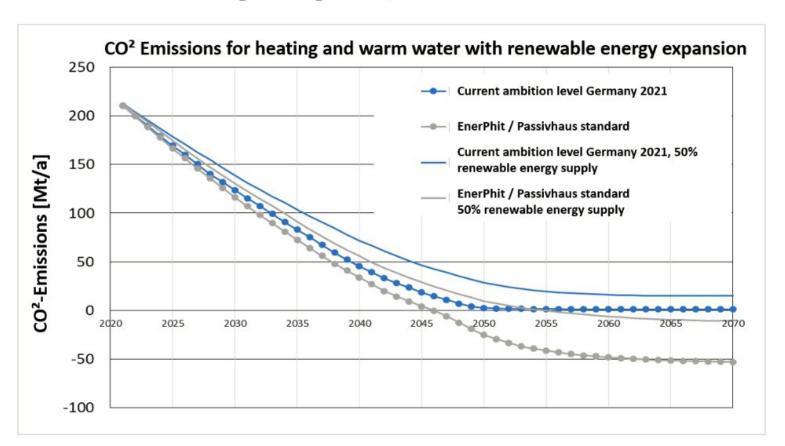
# **Passive Houses in Europe**


**CEPHEUS (1998-2001)** 









# **Energy Use IS Predictable**



#### An EPC within the PHPP:



## Benefits of going beyond requirements:



# outPHit pilot projects



CS02 Papagos / GR



CS09 Lons le Saulnier / FR



CS23 St. Johann in Tirol / AT



CS25\_ Hamburg / DE



CS29\_ Bonneuil sur Marne /
DE



S17 Teruel / ES



CS12 Ansoain / ES



OP06 Tavros / GR



CS11\_Coulanges-sur-Yonne /



Bruno-Sander-Haus

OP21 Innsbruck / AT



CS03\_Cholargos / GR



CS27\_ Frankfurt am Main / DE



OP01\_Papagou / GR



CS14\_Mendillorri / ES



OP28 Hamburg / DE



CS22\_St. Johann in Tirol / AT



CS13\_Pamplona / ES



CS24\_ St. Johann in Tirol / AT



CS04\_Marousi / GR



CS26\_ Bünde / DE



OP06\_Chalandri / GR



CS07\_Bagnères / FR

# What to expect

Renovation systems

Tender documents

Performance certification scheme

Financial and technical monitoring

Technical equipment packages

Deep renovation guidelines

Contracting concepts

Renovation system certification

Manufacturer **support** 

A municipal practitioner network

Design-stage approval concepts

## The Facts

- PROJECT LEAD Passive House Institute
- **PROJECT PARTNERS** 10 partners from 8 countries (AT, BE, FR, DE, GR, NL, ES, BG)
- **PROJECT DURATION** 36 months, until August 2023
- OVERALL BUDGET € 2.5 million
- FUNDING AUTHORITY European
   Union's Horizon 2020 programme



© Stefan Pallantzas, HPHI

# **Project team**

























# Want to learn more? Get in touch with jan.steiger@passiv.de or visit outphit.eu



